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ABSTRACT
Love them or hate them, videos are a pervasive format for
delivering online education at scale. They are especially pop-
ular for computer programming tutorials since videos con-
vey expert narration alongside the dynamic effects of editing
and running code. However, these screencast videos simply
consist of raw pixels, so there is no way to interact with the
code embedded inside of them. To expand the design space of
learner interactions with programming videos, we developed
Codemotion, a computer vision algorithm that automatically
extracts source code and dynamic edits from existing videos.
Codemotion segments a video into regions that likely contain
code, performs OCR on those segments, recognizes source
code, and merges together related code edits into contiguous
intervals. We used Codemotion to build a novel video player
and then elicited interaction design ideas from potential users
by running an elicitation study with 10 students followed by
four participatory design workshops with 12 additional stu-
dents. Participants collectively generated ideas for 28 kinds
of interactions such as inline code editing, code-based skim-
ming, pop-up video search, and in-video coding exercises.
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INTRODUCTION
Love them or hate them, videos have become a pervasive for-
mat for delivering online education at scale. Throughout the
past decade, video-centric xMOOCs from major providers
such as Coursera, edX, and Udacity have gained mindshare
over earlier cMOOCs that centered on ad-hoc learner-formed
social networks [17, 19]. Khan Academy popularized sketch-
based videos for topics such as K-12 math. YouTube is now
home to tens of millions of educational videos on a wide
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Figure 1. Example sources of programming tutorial videos: jQuery web
development tutorial from an online course (left), game development live
stream (right), live coding during a MOOC lecture (Figure 2).

range of topics (e.g., youtube.com/education). However, learn-
ers still interact with videos via user interfaces that have
remained relatively unchanged since their origins in early
videocassette players. As a result, it can be hard to skim,
search, and navigate through videos [23, 25, 36]. How can
we improve video player interfaces to better serve learners?

This paper focuses on improving learner interactions with
computer programming videos in particular since there is
now widespread global interest in learning to code [16].
These videos are often formatted as screencast recordings
that demonstrate coding concepts in MOOCs, professional
training courses, and live streams [11, 28, 29, 37] (Figure 1).
Screencast videos have two major advantages over text-based
materials: Videos convey the dynamic effects of running
code, such as GUI animations and user interactions [28, 29,
38]. Videos also reveal the dynamic process of an expert edit-
ing and debugging code in real time, which lets viewers emu-
late learning by “looking over an expert’s shoulder” [42, 43].

In spite of these benefits, programming videos can be cumber-
some for learners to consume. Say you wanted to learn how
experts use a particular sequence of API function calls. First,
it is hard to even find any videos that showcase those func-
tions because search engines cannot index the code within
videos. Once you do find a promising video, it is hard to
use a conventional video player to navigate to the exact point
where those functions are used. And even when you finally
reach the relevant part, you cannot copy-and-paste the code to
experiment with it on your own computer. How can we start
to overcome these limitations of current video interfaces?

We take a three-step approach: 1) use computer vision to au-
tomatically extract source code from existing videos; 2) cre-
ate a prototype video player that surfaces this extracted data
in a UI that eases code search and navigation; 3) show this UI
to programming students to elicit a diverse set of new inter-
action ideas via a participatory design process [34].

youtube.com/education


Specifically, we created a vision algorithm called Codemotion
that automatically segments a video into regions that likely
contain code, performs OCR (optical character recognition)
to turn each segment into text, and uses time-aware diff
heuristics to merge intervals of related code edits, which re-
constructs the original code and how it changed over time.
On a set of 20 YouTube videos, it was able to find 94.2% of
code-containing segments with an OCR error rate of 11.2%.

We then created a video player UI based on Codemotion and
used it to elicit interaction design ideas from its target user
population with a user study on 10 university students fol-
lowed by 4 participatory design workshops [34] with 12 other
students. We encouraged participants to brainstorm diver-
gently to come up with diverse designs [4]. They collectively
generated 28 ideas to enhance video interactions, which we
grouped into four categories: code interactions, navigation,
search, and active learning. Example ideas include inline
code editing, code-based skimming, pop-up video search, and
in-video coding exercises. The contributions of this paper are:

• Codemotion, a computer vision algorithm that extracts
source code and edit intervals from existing videos.

• A video player UI that eases code search and navigation.

• A set of 28 Codemotion-inspired design ideas generated
by students in four participatory design sessions, which ex-
pand the space of interactions with programming videos.

RELATED WORK

Enhanced Video Players and Video-Based Tutorials
Our goal of designing new kinds of interactions with pro-
gramming videos was inspired by prior work in enhanced
video players. Systems such as Video Lens [32], Panop-
ticon [22], LectureScape [23], Swifter [31], and Scene-
Skim [35] facilitate navigation and skimming through long
videos or collections of videos, often aided by time-
aligned transcripts or domain-specific metadata. Video Di-
gests [36] and VideoDoc [25] let users semi-automatically
create mixed-media text+video tutorials from existing lec-
ture videos that contain text transcripts. Systems such as
MixT [7], Chronicle [15], DocWizards [2], and those by
Grabler et al. [14] and Lafreniere et al. [26] allow users
to create mixed-media tutorials by demonstrating their ac-
tions within specially instrumented versions of software tools
such as image editors. ToolScape [24] uses a crowd-powered
workflow where Mechanical Turk workers label the step-by-
step structure of existing how-to tutorial videos. In contrast,
our approach to generating a video tutorial player UI is fully
automatic and requires only raw screencast videos as input.

Extracting State from Screenshots & Screencast Videos
Codemotion’s vision algorithm was inspired by prior systems
that extract state from screenshots and screencast videos.

Sikuli [6, 44] and Prefab [10] use computer vision to auto-
matically identify GUI elements from screenshots, which lets
users customize, script, and test GUIs without needing access
to their underlying source code. However, these tools were
not designed to extract structure from screencast videos or to

convert them into step-by-step tutorials. While Sikuli uses
OCR (optical character recognition) to extract text within
screenshots to facilitate search, it does not try to extract entire
blocks of code or dynamic edit intervals. In contrast, Code-
motion was designed specifically for extracting code edit in-
tervals from videos and introduces a custom edge detection
algorithm to detect GUI panes that likely contain code.

Systems such as Pause-and-Play [38] and Waken [1] extend
these ideas by automatically detecting GUI elements within
existing screencast videos. Since they operate on videos,
they can identify both static GUI components and dynamic
interactions such as mouse movements and icon clicks. Us-
ing this information, these systems generate enhanced tutorial
video players that are linked to the underlying state of instru-
mented applications. In contrast, instead of being aimed at
general GUI tutorial videos, Codemotion focuses specifically
on computer programming tutorials where someone is writing
code and demonstrating its run-time effects, so its algorithm
focuses solely on extracting and reconstructing source code.

Much like how our work focuses on computer program-
ming videos, related systems such as NoteVideo [33] and
Visual Transcripts [40] also each focus on a specific tutorial
domain—in both cases, hand-sketched blackboard-style lec-
ture videos popularized by Khan Academy [17]. They use
computer vision techniques to extract strokes from pixel dif-
ferences between video frames and then combine that data
with time-aligned text transcripts to create searchable and
skimmable mixed-media tutorials from raw videos.

In the broader computer vision literature, there is ongoing
work in both content-based image retrieval [27] and content-
based video search [45], which aim to automatically extract
semantic meaning from arbitrary images and videos, respec-
tively. These techniques target real-world imagery and are
far more general than what is required to extract state from
computer-based screenshots. Also, they are not tuned for rec-
ognizing text-based content, so it would be impractical to try
to adapt them to work on computer programming videos.

Extracting Source Code from Programming Videos
The closest related work to our project are CodeTube [39] and
Ace [43], which both extract source code from videos using
a similar high-level approach by finding code-containing seg-
ments and running OCR to extract raw code. Both algorithms
differ from Codemotion in low-level details, but the most sig-
nificant improvement that Codemotion makes over those is
that Stage 3 preserves the actual contents and diffs of source
code within dynamic edit intervals, which is crucial for re-
playing the edits in an enhanced video player UI. In contrast,
CodeTube extracts only a raw dump of tokens necessary for
search indexing and neither CodeTube nor Ace reconstructs
code in a format that is presentable to end users.

More significantly, our project’s contribution differs from and
extends the ideas in both of these systems since we use the
Codemotion algorithm as a conduit to expand the design
space of interactions with programming videos. Specifically,
we contribute a novel video player UI along with a set of
28 additional interaction design ideas. In contrast, CodeTube



and Ace were designed solely to support code search engines.
CodeTube has a basic search UI that combines in-video and
Stack Overflow search, while Ace has no UI.

EXTRACTING SOURCE CODE AND EDITS FROM VIDEOS
Codemotion is a three-stage algorithm that automatically ex-
tracts source code and edit intervals from existing videos. Al-
though prior systems implemented their own variants of its
first two stages [39, 43], we felt that it was still important to
create our own automated end-to-end system to: a) demon-
strate efficacy on a more diverse corpus of programming
videos than those seen in prior work, and b) independently ar-
rive at design decisions that complement those of prior work.

Formative Study and Algorithm Design Goals
To understand variations in format amongst programming
videos, we performed a formative study by characterizing
the properties of 20 such videos from YouTube and MOOCs.
While we cannot be comprehensive, we strived to achieve
diversity in programming languages, topics, lengths, popu-
larity, visual layout, and presentation styles. Table 1 shows
our corpus. These videos are all live coding sessions where
the instructor demonstrates concepts by writing, running, and
verbally explaining their code while recording their screen.

One of our most salient observations was that these videos
often feature split-screen views of both a code editor and
an output window. This way, the instructor can simultane-
ously show themselves writing code and the effects of run-
ning that code. The output window can be as simple as a
text terminal or as rich as a custom GUI application (e.g., for
game programming) or a web browser (e.g., for web develop-
ment). Windows also occasionally get moved around and re-
sized throughout the video. When screen space is limited, the
instructor will alternate between the code editor and output
panes with all windows maximized, so only one is shown at
once. Some videos show a “talking head” [17] where a mini-
video of the instructor’s head is embedded within a frame in
a corner; others intersperse PowerPoint slides for exposition.
Thus, many video frames and regions do not contain code.

Even within the GUI windows that do contain code, there is
still a lot of variation and noise. For instance, these windows
often feature extraneous non-code elements such as menu
items, borders, gutter line numbers and marks, highlighted
lines, different background colors, and varying font styles.

We also observed that each video naturally partitions into sev-
eral discrete “time intervals” of code that the instructor incre-
mentally builds up and tests in sequence. For instance, a web
programming tutorial may start with an interval of JavaScript
code edits, followed by an interval of CSS, then HTML, then
JavaScript again. Even single-language tutorials are orga-
nized into multiple intervals as the instructor implements and
tests different code components throughout the video.

Based on these observed properties of programming tutorial
videos, we distilled three design goals for Codemotion:

• D1: It must be able to find video regions that contain code.
• D2: It must be able to reliably extract source code from

those regions without picking up extraneous GUI noise.

ID Video Title Length Language bgcolor

1 Print all size-K subsets from an array 5:28 Java white
2 JQuery Tutorial 1:14:25 JavaScript light
3 Angular 2 Routing & Navigation 13:11 JavaScript dark
4 CS50 2016 - Week 8 - Python 2:12:59 Python dark
5 Learn PHP in 15 minutes 14:59 PHP dark
6 Google Python Class Day 2 Part 3 25:50 Python light
7 Python Web Scraping Tutorial 2 9:10 Python white
8 Python Beginner Tutorial 1 9:08 Python mixed
9 Python Programming 43:15 Python white

10 Introduction to D3 1:38:16 JavaScript white
11 D3.js tutorial - 1 - Introduction 5:42 JavaScript white
12 Methods reverse and copy 7:22 Java white
13 Programmieren in C #03 4:04 C mixed
14 Ruby Essentials for Beginners: Part 1 28:35 Ruby white
15 C# programming tutorial 1:32:11 C# white
16 C# Tutorial - Circle Progress Bar 4:18 C# white
17 Coding Rails: Redirect actions 6:05 Ruby dark
18 Starting a Report and Title Page 11:15 LaTeX white
19 Using make and writing Makefile 20:45 make mixed
20 Learning C Game Programming 29:55 C white
Table 1. Corpus of YouTube programming tutorial videos that we used
for both our formative study and for the quantitative evaluation of Code-
motion (bgcolor=background color of code editor panes within video).
More details available online at https://goo.gl/xLUPGo

• D3: It must be able to split a video into a set of meaningful
time intervals based on chunks of related code edits.

Stage 1: Finding Potential Code Segments Within Frames
The first stage of Codemotion finds places where code possi-
bly resides within the video (Design Goal D1).

This stage first samples each second of the video by extracting
the first frame of each second as an image (code is unlikely to
move significantly within the span of a second). Each frame
is a bitmap image of the computer desktop, which has a col-
lection of GUI windows. The objective of this stage is to iso-
late regions within these windows (called “segments”) that
potentially contain code. This segmentation step is necessary
because OCR engines are designed to work with images sat-
isfying properties that make them look similar to high-quality
scans of pages in a book – i.e., containing only text with
a simple, consistent, and predictable layout, good contrast,
no significant rotation or skew, and at least a minimum x-
height for text [41]. Thus, running the entire raw video frame
through OCR does not usually produce sensible results.

Unfortunately even running images of individual GUI win-
dows through OCR does not work either, due to UI elements
such as menu items, buttons, and icons making those images
not conform to a “book-like” layout of paragraphs of pure text
that OCR engines expect. Also, even a single GUI window
often contains multiple panes of independent content, such as
an IDE showing several source code files side-by-side. Thus,
we need a robust way to isolate each pane so that we can ex-
tract the code within each one as independent pieces of text.

We base our segmentation algorithm on the following empir-
ical observation: code is usually written in left-aligned lines
within a pane with distinct borders. Thus, our strategy is to
identify critical horizontal and vertical lines that demarcate
text regions and choose a rectangular crop that ignores back-
ground color differences like those due to highlighting of the

https://goo.gl/xLUPGo


Figure 2. Example of running Codemotion’s video frame segmenter (Stage 1) on a lecture video containing a talking head alongside an IDE with
multiple text panes (ID=4 from our corpus). The lower-right image shows the output of this stage: three segments (a., b., c.) that possibly contain code.

currently-edited line. Our algorithm has seven steps and is
implemented using Python bindings to OpenCV [21]. We use
the example video frame in Figure 2 to illustrate how it works:

1. Use a Canny edge detector [5] to find all edges in the frame.
2. Since the Canny detector finds many extraneous edges that

are not likely to be GUI pane borders, use a probabilis-
tic Hough transform [30] to find the subset of edges that
are horizontal or vertical straight line segments with a non-
trivial length (shown in red in Figure 2, Step 2).

3. Extract the two endpoints of each line segment. Since the
border of each pane likely contains several parallel seg-
ments, their endpoints will appear together in clusters.

4. For each cluster of endpoints, take the one closest to the
center of the image and discard the rest in its cluster. These
are shown as large red dots in Steps 3 and 4 of Figure 2. We
keep only these points because they are the most likely to
lie at the innermost edges or corners of each GUI pane.

5. For each point found in Step 4, connect it to another point
in a way that forms a nearly-horizontal or nearly-vertical
line segment. Save these line segments for Step 7.

6. Using the same set of points in Step 4, find the smallest
aligned rectangular crop around the convex hull of those
points. Doing so gives the bounding box surrounding all
GUI panes of interest, shown in red in Figure 2, Step 6.

7. Combine the line segments from Step 5 with the bound-
ing box from Step 6 to split the image into rectangular seg-
ments. In Figure 2, the three extracted segments are labeled
a, b, and c, respectively, in the “Output segments” image.

The output of this stage is a set of cropped rectangular seg-
ments for each video frame, some of which may contain code.
In our example in Figure 2, the algorithm detected three seg-
ments: a) the upper left segment contains C code, b) the up-
per right segment contains Python code, and c) the bottom
segment is a terminal shell with plain text output.

Stage 2: Extracting Source Code From Segments
Stage 1 produced a set of segments within each video frame.
In this stage, Codemotion runs the Tesseract OCR engine [41]
on each segment to extract text from it and then determines
which text is likely to be code (Design Goal D2). Recall that
Stage 1 is necessary since simply running OCR on the entire
frame and even on individual GUI windows usually fails to
produce meaningful text. This stage contains six steps:

1. Upscaling: OCR engines need text to be above a minimum
size (i.e., x-height) to trigger detection, so Codemotion first
upscales each segment image to 2X resolution before run-
ning Tesseract on it, which improves recognition results.

2. Edge padding: Sometimes text stretches all the way to
the edge of a segment, which diminishes OCR quality for
words near the edges. To improve recognition results,
Codemotion adds a 2%-width padding around each seg-
ment filled with its background color.

3. Run the Tesseract OCR engine on the segment after up-
scaling and padding it. Tesseract produces as output the
extracted text along with style and layout metadata.

4. Post-process the text extracted by Tesseract to format it
according to heuristics that work well for source code:
a) Code sometimes appears in a segment with line num-
bers displayed on the left edge, which is common in IDEs
and text editors; first eliminate left-aligned text that looks
like line numbers. b) Due to image noise, Tesseract some-
times erroneously recognizes text within images as ac-
cented characters (e.g., é or è) or Unicode variants such as
smart quotes. Convert those into their closest unaccented
ASCII versions. To account for non-English languages,
this fix should be limited only to programming keywords.

5. Reconstruct indentation: Unfortunately, the text produced
by Tesseract does not preserve indentation. While this is
usually not important for paragraphs of prose, it is essen-
tial for code because we want to preserve indentation-based



coding style, and in the case of whitespace-significant lan-
guages such as Python, also preserve run-time semantics.
Fortunately, Tesseract’s output contains metadata about the
absolute position of each word, so Codemotion recon-
structs indentation levels using these coordinates.

6. Detect code: Codemotion runs the post-processed text
through an off-the-shelf tool [20] to determine whether it
is likely to be code in a popular language. This tool is a
Bayesian classifier trained on a large corpus of code from
popular languages including Python, JavaScript, Ruby, and
several C-style languages. If the classifier fails to recognize
a language with sufficient confidence, then that segment is
labeled as “plain text,” which lets it detect code comments.

In sum, this stage turns each segment within each video frame
into text formatted to look like source code, along with a label
of its programming language (or “plain text” if none found).

Stage 3: Finding Code Edit Intervals
This final stage takes the extracted code for each segment
across all video frames in which that segment appears and
finds intervals of closely-related code edits (Design Goal D3).
To our knowledge, this is the first technique to extract code
edit intervals from videos, which is essential for replaying
those edits in a tutorial UI. These four steps run independently
for each segment across all video frames in which it appears:

1. Inter-frame diffs: Use diff-match-patch [12] to compute
a diff of the segment’s code between every consecutive
frame. These inter-frame diffs capture regular code edit-
ing actions such as inserting, changing, and deleting code.
These diffs also serve as the basis for the rest of the steps.

2. Merging code when scrolling: Tutorial authors often scroll
the code editor vertically so that slightly different lines of
code are shown between frames. Codemotion merges code
from frames where scrolling likely occurred to produce one
unified block of code. This merging process is triggered
when the inter-frame diff indicates that some lines of code
have disappeared from the top while other lines have ap-
peared at the bottom, or vice versa – both of which are
likely due to scrolling. This merge heuristic is vital for pro-
ducing a unified block of code over a continuous series of
frames instead of disjointed code snippets for each frame.

3. Splitting a segment into code edit intervals: Codemotion
keeps collecting diffs and merging code due to scrolling
(see above) until it reaches an interval boundary. At that
point, it starts a new interval and continues processing. An
interval boundary occurs when: a) the programming lan-
guage of the detected code changes, or b) the inter-frame
diff shows more than 70% of the lines differing. This could
occur either due to the author switching to editing a differ-
ent file, or scrolling too far too quickly. Note that since this
algorithm uses diffs to split each segment into edit inter-
vals, it is not affected by GUI panes resizing or moving, as
long as the code inside does not change significantly.

4. Quick-switch optimization: Sometimes the tutorial author
is editing file A, switches to edit a different file B for a few
seconds, and then switches back to file A. The default inter-
val splitting algorithm will find three intervals: file A, file

B, and a new interval upon returning to file A. What is more
preferable is to merge the two file A intervals into a single
longer interval. Codemotion implements this optimization
by keeping the time elapsed since the prior interval, and
if the intervening (e.g., file B) interval is short (e.g., less
than 10 seconds), then file A’s interval will keep accumulat-
ing again when the author switches back to it since Code-
motion notices a small enough diff from the previously-
seen frame for file A. (B’s interval remains unchanged.)
This optimization helps preserve the meaning of an “inter-
val” as the author continuously editing a single piece of
code, even if they momentarily switch to edit another file.

This stage’s output is a set of edit intervals for each segment.
Each interval contains all of the timestamped diffs needed to
reconstruct all of its code edits, along with the full contents
of the code in that interval (taking scrolling into account).

Quantitative Evaluation of the Codemotion Algorithm
Before presenting ideas for new user interfaces built atop
Codemotion, we first present a brief quantitative evaluation
of its performance. We ran Codemotion on the 20 videos
from our formative study corpus (Table 1). We summarize
the results here in aggregate; raw statistics for each individ-
ual video are available online at https://goo.gl/xLUPGo

Our videos ranged from 4 minutes to over 2 hours long. Total
algorithm running time is proportional to the length of each
video, and ranges from 0.9X to 8.9X of each video’s length.

We computed the time-weighted average number of segments
in each video. For instance, if 5 minutes of a 20-min video
had 1 segment and the remaining 15 minutes had 2, then the
average would be 1.75. The averages in our corpus ranged
from 0.94 to 2.17 (mean=1.32), which reflects the fact that
most videos had either a single pane of code, a split view of
code + text output, or two code editors. Averages can be less
than 1.0 since some videos contained portions with no text
segments (e.g., someone lecturing or drawing on the board).

The raw numbers of code edit intervals that Stage 3 found
for each video ranged from 11 to 1,210 (mean=677), which
is again proportional to video length. By default each of
those would appear as a tutorial step in our prototype UI (Fig-
ure 3), but we found it cumbersome to have dozens (or even
hundreds) of tiny intervals without much content interspersed
with more substantive, longer intervals. Thus, for our UI pro-
totype, we merged intervals so that each was at least 10 sec-
onds long, which drastically cut down on the total number of
intervals (i.e., tutorial steps) to an average of 2.5 per minute.
It is hard to automatically discover an objectively “correct”
number of steps for each tutorial, but the 10-second merge
heuristic was enough to eliminate most trivially short steps.

There are two main sources of algorithmic inaccuracies that
negatively affect code extraction quality: not being able to
find well-cropped code segments in the video (Stage 1) and
errors in Tesseract’s OCR (Stage 2). Inaccuracies in Stage 3
are not as serious since, as mentioned earlier, there is no ob-
jectively “correct” number of edit intervals, and finding more
or fewer intervals does not lose meaningful information about
the extracted code or diffs.

https://goo.gl/xLUPGo


To quantify segment-finding inaccuracies, we manually in-
spected all intervals from all 20 videos with the Stage 1 seg-
menter output overlaid on them (Figure 2). We count a code
segment as “missing” if it is either not found at all by the al-
gorithm within each 10-second window, or is found but is ei-
ther incomplete or not closely-cropped enough (e.g., includes
window borders, menu items, or other edge chrome that di-
minish OCR accuracy). We divide the number of missing
segments by the total number of 10-second windows in the
video to compute a miss percentage, which averages to 5.8%
across all 20 videos (for each video: min=0%, max=14%).
Thus, Codemotion was able to find 94.2% of total segments.

Assuming that well-cropped segments are found by Stage 1,
Stage 2 relies on Tesseract’s OCR engine as a black box. No
OCR will be perfect, and since developing an OCR engine is
outside the scope of this paper, those inaccuracies are largely
out of our control. We found three sources of inaccuracies:
1) We feed video frames into the OCR engine, which have far
more compression artifacts and noise than screenshot images.
2) Most videos we found are 480p/720p, so small text is not
sharp enough for recognition, even with upscaling. 3) Tesser-
act confuses similar-looking characters, such as recognizing
“factorial()” as “factoria1()” (a common OCR problem).

To estimate OCR error rates, we randomly sampled 5 video
frames from each video (100 total) and manually checked
OCR outputs for accuracy. Out of 20,334 total characters
in the ground truth across all 100 frames, 4.8% were mis-
recognized (e.g., ‘l’ became ‘1’), 4% were missing in the
OCR output, 0.4% were indentation errors (only semantically
meaningful for languages like Python), and 2% had the OCR
produce excess characters (e.g., ‘-’ became ‘--’). This adds
up to a total estimated OCR error rate of 11.2%.

Since our project’s main goal was to explore new user inter-
actions with programming videos, we did not attempt to opti-
mize the performance of Codemotion. There is undoubtedly
much room for improvement by, say, incorporating better ma-
chine learning techniques, but our base accuracy rates were
sufficient for prototyping and testing new user interfaces.

PROTOTYPE VIDEO TUTORIAL PLAYER INTERFACE
The output of the Codemotion algorithm is raw data consist-
ing of source code and edit intervals for a processed video.
We created a user interface to surface that raw data to learn-
ers. Inspired by prior work in mixed-media tutorial formats
that combine video and text modalities [7, 25, 36], we made
a new kind of programming video tutorial player UI to sup-
port navigation and search through videos that are processed
with Codemotion. We loosely followed the design guidelines
of Chi et al. [7] but developed a novel type of mixed-media
interface specialized for computer programming tutorials.

Figure 3 shows an overview of our web-based interface. The
original video is split into one mini-video for each code edit
interval (found by Stage 3). Thus, each step in the UI shows
the author making closely-related edits to a single unified
piece of code. This allows the user to easily skim the entire
video to see different conceptual phases of the tutorial, such
as someone first editing HTML, then CSS, then JavaScript.

Figure 3. Our novel web-based video player interface that surfaces the
data Codemotion extracts from a video: a.) Each extracted step is a mini-
video spanning a code edit interval. b.) As each mini-video plays, the
code within it updates live on the right. c.) The auto-detected language
is shown. If an interval contains multiple segments/languages, the user
can click to switch between them. d.) A search box enables code search
within videos; results are highlighted in orange on the video timelines.

Each step in the UI has its mini-video on the left and a corre-
sponding code display box on the right. When the video is not
being played, the code display box shows the total accumu-
lated code at the end of that edit interval. This allows the user
to quickly skim all of the code written in each step and copy-
paste it into their own IDE to experiment with it. This also
serves as a concise summary for what happened in that step.
When the user starts playing a mini-video (e.g., Figure 3a),
its accompanying code display box gets updated in real time
to reflect the code written so far up to that time. Since Stage
3 merges code from consecutive frames to take scrolling into
account, the code display box will show all of the code written
so far in that edit interval, not only what is currently displayed
on-screen in each corresponding video frame.

Our UI also shows a search box at the top of the webpage
(Figure 3d). The user can enter any string to find all occur-
rences of it throughout the code in all edit intervals across all
tutorial steps. The UI highlights all found occurrences with
orange tick marks on video scrubber timelines (Figure 3d).
The user can click on any of the orange marks to jump to a
point in the video where that search term appears in the code.

ELICITATION USER STUDY
The prototype user interface that we created (Figure 3) is only
one possible starting point in the design space of new video
interactions enabled by Codemotion. To get initial user im-
pressions of this interface and to elicit new design ideas for
future programming video tutorial interfaces, we ran an elic-
itation user study by having students use both our prototype
UI and the default YouTube video player.



Procedure
We recruited 10 computer science students (3 female) each
for a 1-hour study. Each participant watched 10-minute ex-
cerpts from two YouTube videos on Python and Ruby pro-
gramming, respectively (IDs 4 and 14 from Table 1). They
also interacted with the Codemotion-generated UI for dif-
ferent (but similarly information-dense) 10-minute excerpts
from those same two videos. We alternated the order of ex-
posure to YouTube’s and Codemotion’s UIs between partici-
pants. We instructed participants to try to learn the material
in whatever way they normally would while thinking aloud to
report their perceptions and desires for alternate UI designs.
They could also use the lab computer to write and run code.

Subjective User Perceptions of Our Prototype UI
Although we did not rigorously measure engagement, we
saw that participants tended to passively watch the entire
10-minute YouTube video excerpts like a lecture. In con-
trast, with our UI they appeared more actively engaged when
watching the short videos representing edit intervals extracted
by Codemotion and following along with the respective code
edits being “mirrored” in real time in the accompanying code
editor boxes (Figure 3b). They often copied that code into a
REPL or text editor to execute. We also saw that because they
had to explicitly hit “Play” on the usually-short videos within
each step, that forced them to pause to reflect and try out the
code snippets rather than passively watching on YouTube.

All participants noticed occasional OCR inaccuracies, but
they found those easy to fix when copy-pasting or re-typing
the code into an external text editor to execute. When asked
about these inaccuracies, a common mental model that par-
ticipants conveyed made an analogy to YouTube’s automatic
captioning tool for generating text transcripts from videos
via speech recognition. Just like with automatic captioning,
they did not expect the code to be perfectly extracted from
videos. Participants felt that having the general flavor of code
components (even with misspellings) was enough to support
copying-and-pasting and then manual fixing up minor errors.

Elicited Ideas for Alternate User Interface Designs
We encouraged think-aloud and solicited suggestions for al-
ternate designs while participants were interacting with our
UI. Here were the most common types of suggestions:

User-adjustable intervals: There was not universal agreement
on what the optimal edit interval boundaries were. Everyone
had their own preferences in terms of interval lengths, but P2
mentioned offhand that many of the video clips seemed to end
right when he was starting to feel restless. P5 said he did not
mind if there were too many or too few intervals since, unlike
in YouTube, he could easily see an overview of all intervals in
our UI and quickly skip to another one when the current one
got boring or did not contain enough information density; he
called it being able to “skip the commercials.” But since it
was hard to come up with an optimal set of intervals for ev-
ery viewer, one suggested improvement was to let the viewer
dynamically adjust interval granularity with a slider in the UI
and have the system hierarchically merge intervals based on
heuristics such as code similarity in neighboring intervals.

Get rid of video clips: Participants often fixated on watching
the code editor box alongside each mini-video update in real
time while listening to the author’s narration from the accom-
panying video. P9 reported that doing so had the advantage
of showing him all the code in an interval, not just what is
currently on-screen, since Codemotion merges accumulated
code when the editor display is scrolled. He also appreciated
the “stability” of studying code in the editor since the code
remains still even when there is UI scrolling or active win-
dow changes in the video. Along a similar vein, P5 said that
he would be fine seeing only the code editor and listening to
audio narration without the original video at all. As another
way to reduce visual clutter, P7 suggested showing a single
mini-video at a time with previews of the previous and next
intervals, respectively, instead of showing all videos at once.

Enhanced search: P5 wanted to see search results visually
highlighted within the video clips, which should be feasible
with visual overlays. P4 wanted to be able to search across
multiple videos. P7 mentioned that she could see herself us-
ing search as a replacement for bookmarking video excerpts.
To re-find some concept later, she can simply search for
terms she remembers instead of needing to remember its loca-
tion. Thus, automatically saving prior searches as bookmarks
could further help support this use case. Finally, P9 also sug-
gested Codemotion’s code search engine could be useful for
enhancing plagiarism checkers for coding assignments since
these tools currently cannot tell if someone copies code from
one of the millions of programming videos available online.

Executing code: We did not design Codemotion to be able to
execute the extracted code due to real-world code having hid-
den dependencies that are hard to capture from isolated video
clips. However, several participants said that the code looked
good enough to run and thus wanted an “execute” button.

PARTICIPATORY DESIGN OF NEW VIDEO INTERACTIONS
Participants in our elicitation study had diverse opinions
about what they wanted to see in a programming video tu-
torial interface. Inspired by their perspectives, we wanted to
solicit additional input to expand our design space farther be-
yond our initial prototype UI in Figure 3. To do so, we con-
ducted 4 participatory design workshop sessions [34] at our
university, each held with a group of 3 students in a room with
whiteboards, markers, paper, and pens. We recruited 12 total
programming students (3 female) from majors such as com-
puter science, cognitive science, and communication; these
students were not in our elicitation study.

Although similar in spirit to our prior elicitation study, this
participatory design study was a group-based brainstorming
activity rather than an individually-administered user study.

We began each one-hour workshop by having all participants
talk about resources they currently use for learning program-
ming, which was both an icebreaker and primed them to
think about learning resources. Then we showed them sev-
eral videos from our corpus (Table 1) and introduced Code-
motion. In two sessions, we showed participants our proto-
type UI (Figure 3) to help ground their ideation using a con-
crete artifact, but we encouraged them to form divergent ideas



Code Interactions Navigation Search Active Learning
Inline code annotation (3)? Labeled timeline (2) Related code finder (2)? In-video exercises (3)?
Inline code editing (2)? Tabbed navigation (2)? Pop-up video search (2)? Check-your-answers mode (3)
Video-within-code (2)? Output-based navigation (2)? Stack Overflow search (4)? Anchored discussions (1)
Code-to-video (2)? Table of contents (2)? Video mash-ups (2)? Pop-up hints (2)
Code-to-audio (1) Code-based skimming (2)? Internationalized search (1) Choose-your-own-adventure (1)
REPL sidebar (1) Cross-video links (2)?
File tabs (2)? Sub-interval diffs (1)
Browser devtools (2)? Panopticon (1)
Extract-to-X (3)? Mixed-media (6)

Table 2. The 28 video interaction ideas developed during 4 participatory design workshop sessions with Codemotion. The numbers in parentheses
represent how many different participants came up with that idea, and ? means that participants in more than one session came up with that idea.

that do not resemble our UI. In the other two sessions, we did
not show them our UI and instead sketched out the features
of the Codemotion algorithm, in order to mitigate possible
biases in ideation due to fixation on our UI’s details.

After this 15-minute orientation, we had participants come
up with interaction design ideas on their own for 15 minutes
either on paper or on a whiteboard. We encouraged them to
come up with as many different unrelated ideas for interacting
with the data that Codemotion provides rather than fixating
on refining any specific idea (i.e., branching outward to try to
“get the right design” instead of iterating to “get the design
right” [4]). We then had them share all designs with each
other for 15 minutes and then do another 15-minute round of
individual brainstorming, this time encouraging them to be
inspired by ideas they had just seen from other participants.

Two researchers examined all the student sketches and field
notes together and classified student-created designs into cat-
egories via an inductive approach [8]. We drew upon our own
experiences as programming instructors and video creators.

Participant-Created Designs
Table 2 summarizes the 28 design ideas that participants came
up with, which we grouped into 4 categories. Most of these
ideas were either generated by more than one participant
(75%) and/or by participants in multiple sessions (61%). On
average, each participant generated 4.9 different design ideas,
often inspired by discussions with their two session partners.
(Some ideas overlapped with those suggested during the prior
elicitation study, although these were different participants.)

The first category of ideas involved code interactions:

Inline code annotation: Show a textual overlay of code being
written in real time directly laid on top of the video (similar
to VidWiki’s UI [9]) and let users annotate it with their notes.
If there are typos or errors in that code, then the user can click
a button to send feedback directly to the video’s author.

Inline code editing: Same as above except make the extracted
code editable, compilable, and executable so that the video
player essentially has an embedded IDE overlaid on top of it.

Video-within-code: Some wanted to see all of the extracted
code as a whole instead of watching the author incrementally
write it in the video. They suggested a picture-in-picture view
where they could see all of the code at once and have a small
video playing in the corner embedded within the code display.

Code-to-video: Show all of the extracted code at once in an
IDE-like interface. When the user highlights a selection in
the IDE, play the portion of video where that piece of code
was first written, which could explain why it was written.

Code-to-audio: Same as above, except instead of playing the
appropriate video clip whenever a piece of code is selected in
the IDE, only play the audio to avoid visual overload.

REPL sidebar: Put a REPL (read-eval-print loop) prompt
beside the video so that after executing the code within the
video, users can interactively build upon it using the REPL.

File tabs: Since many videos show code from multiple files,
create a tab for each file and allow users to create new files.

Browser devtools: For web development tutorial videos, di-
rectly integrate the extracted code with the browser’s devel-
oper tools (devtools) to use its visual inspector and debugger.

Extract-to-X: Add buttons to extract code in a section of the
video to a downloadable file or to the clipboard.

Participants also came up with ideas for video navigation:

Labeled timeline: Annotate the video scrubber with visual
indicators of intervals or summaries of code in those intervals.

Tabbed navigation: Split each edit interval into a separate
video in its own tab. To facilitate skimming, label each tab
with an automatically-generated summary of its transcript.

Output-based navigation: Extract and show the visual output
that results from executing the code at the end of each edit
interval (e.g., a webpage animation or graphical output) as
thumbnails to help users navigate within the video.

Table of contents: Automatically summarize the transcript
and code within each interval to create a table of contents
for fast video navigation (reminiscent of LectureScape [23]).

Code-based skimming: Display the extracted code in each in-
terval to use it as cues to quickly skim through videos.

Cross-video links: Many videos are multi-part within a
playlist, so analyze all code and create cross-video links to en-
able users to jump to instances of similar code across videos.

Sub-interval diffs: Show only the diffs within each interval
instead of the full code. This view lets learners see what
code has been added/modified/deleted in each interval and
also serves as a summary to ease navigation.



Figure 4. Two sketches from workshop participants: a.) inline code edit-
ing with labeled timeline, b.) mixed-media format with table of contents.

Panopticon: Show 2-D array of videos or code snippets to see
an overview of many parts, similar to Panopticon system [22].

Mixed-media: Variants of mixed-media formats [7, 25, 36].

The third category of ideas relate to video search:

Related code finder: Search for other videos containing simi-
lar code as what is shown in the current portion of the video.

Pop-up video search: Highlight a portion of code in an IDE
to perform a contextual search based on both that code and
the user’s query in order to find relevant videos. This idea is
similar to Blueprint [3], except applied to video search.

Stack Overflow search: Find relevant Stack Overflow posts
that refer to the code being demonstrated in particular parts
of the video. This idea is similar to CodeTube’s UI [39].

Video mash-ups: Search for particular concepts or code, and
the system stitches together relevant excerpts from multiple
videos into a joint video that satisfies those search conditions.

Internationalized search: Find videos in different languages
(e.g., Chinese, Korean) that showcase similar code examples.

The final category of ideas encourage active learning [13]:

In-video exercises: Generate custom exercises based on the
code in each part of the video or generic questions like “try to
replicate what the author wrote in this interval.” To get users
started, give them skeleton code from the start of that interval.

Check-your-answers mode: After finishing each exercise
from the above idea, replay the video interval with the user’s
submitted solution overlaid on top of the author’s original
demonstrated code. Display diffs between the user’s code and
the solution code to highlight what they did incorrectly.

Anchored discussions: Embed discussion threads within each
video interval so that students can reflect on and talk about
each interval with one another. This idea is similar to prior
work in anchored discussions [18, 46] but applied to video.

Pop-up hints: Show contextually-relevant hints as pop-ups
within parts of the video as it plays, featuring definitions of
technical jargon or relevant API documentation snippets.

Choose-your-own-adventure: Analyze code and transcripts in
videos to create a knowledge graph and make a wizard-like
“choose-your-own-adventure” UI where learners can take dif-
ferent non-linear paths through a corpus of video snippets.

DISCUSSION
Even amongst the limited participant pools in our elicitation
user study and participatory design workshops, there was still
wide variation in interaction design ideas along several di-
mensions: a) Some wanted video-centric interfaces, while
others wanted code-centric interfaces. b) Some wanted tight
focus on one key element (e.g., the video player in Figure 4a)
while others preferred a more “holistic” UI with no predom-
inant focus (e.g., Figure 4b). c) Some wanted to support
the experience of watching entire videos as a whole while
others wanted to use chopped-up video snippets as support-
ing features in an IDE. d) Some wanted to incrementally
improve upon existing video players while others proposed
radically different interaction modes (e.g., choose-your-own-
adventure). In sum, there was no “one-size-fits-all” design
that suited all user needs, so the feasible design space is vast.

Note that not all of these participant-generated ideas were
wholly original; in fact, many reminded us of components
within prior research systems, which we cited in their respec-
tive summaries. However, it was interesting that students who
were probably not aware of these prior systems (since they are
not HCI researchers) independently generated such ideas. In
addition, the data provided by Codemotion let students come
up with these ideas in the context of programming videos,
which was previously impractical to do. The next step here
is to curate some of these piecemeal ideas together into com-
plete user interface prototypes to implement and test. Beyond
these specific ideas, we believe that Codemotion opens up
opportunities for improving the accessibility of programming
videos for visually impaired learners. For example, one could
imagine postprocessing Codemotion’s outputs with a custom
text-to-speech algorithm that combines data from transcripts,
code contents, and time-aligned code edits.

CONCLUSION
To expand the design space of user interactions with computer
programming tutorial videos, we created Codemotion, a com-
puter vision algorithm that automatically extracts source code
and edit intervals from existing videos. A quantitative assess-
ment showed that it can find 94.2% of code-containing seg-
ments with an OCR error rate of 11.2%. An elicitation user
study with 10 students and four participatory design work-
shop sessions with 12 additional students found that partici-
pants generated 28 ideas for enhanced video interfaces related
to code interactions, navigation, search, and active learning.
In an idealized future, everyone would record computer pro-
gramming tutorials using specialized tools that provide de-
tailed metadata about the constituent source code, edit histo-
ries, outputs, and provenance so that these tutorials are not
simply raw pixels stuck within video files. However, in our
current world, screencast videos are one of the most conve-
nient and pervasive ways to record computer-based tutorials,
so millions of such videos now exist on sites such as YouTube
and MOOCs. This paper’s contribution works toward helping
learners unlock the insights hidden within their pixels.
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