

The Impact of “Cosmetic” Changes
on the Usability of Error Messages

Tao Dong
Google
Mountain View, CA, USA
dongtao@acm.org

Kandarp Khandwala*
UC San Diego
La Jolla, CA, USA
kandarpksk@gmail.com

ABSTRACT
Programmatic errors are often difficult to resolve due to poor usability of error messages.

Applying theories of visual perception and techniques in visual design, we created three visual
variants of a representative error message in a modern UI framework. In an online experiment, we
found that the visual variants led to substantial improvements over the original error message in
both error comprehension and resolution. Our results demonstrate that seemingly cosmetic
changes to the presentation of an error message can have an oversized impact on its usability.

1 INTRODUCTION

Programmatic errors are errors encountered by users of programming tools in the process of
writing code. When a programmatic error occurs, the programmer can usually expect a message
from the tool describing what has gone wrong and try to debug from there. Nonetheless, research
has shown that programmers, especially novices, struggle to make sense of error messages, not to
mention take action on them [9].

*

 Kandarp Khandwala worked on this study when he was an intern at Google.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s)
CHI'19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5971-9/19/05.
https://doi.org/10.1145/3290607.3312978

https://doi.org/10.1145/3290607.3312978

KEYWORDS

Error message; programming; developer
experience; presentation technique; experiment

Figure 1: An example code snippet (upper) and the
error message (lower) resulted from running it in a
program written in Flutter, a UI framework.

The work described in this paper aims to improve the usability of error messages in
programming by enhancing their presentation. Specifically, we designed and evaluated three visual
variants of a representative error message in an open-source UI framework, by applying visual
perception theories and visual design techniques. In an experiment, we found that all three
variants resulted in much higher error comprehension and error resolution rates than the original
presentation of the error message, though the enhancements are seemingly “cosmetic.”

Our design exploration and experimental results make two contributions: 1) validating specific
presentation techniques for improving the usability of error messages in programming, and 2)
linking the design space of error messages to HCI theories and techniques about visual perception.

2 RELATED WORK

2.1 The Usability of Error Messages

Unintuitive error messages can be frustrating to novice programmers and a significant barrier
in learning programming [9]. Even for professional developers, resolving errors in programs can be
time consuming and a source of productivity loss [7]. To make error messages easier to understand
and act on, prior work has examined several aspects of the problem. Here, we describe a few
representative works due to the space limit.

To address the style of error messages, Nielsen made a number of recommendations, such as
human-readable language, polite phrasing, and precise descriptions [5]. Inspired by models in
argumentation theory, Barik et al. [1] examined the structure of error messages, and argued that an
effective error message should follow a simple argument layout consisting of a claim, grounds, and
a warrant, with the possibility to include additional elements. To enrich the content of error
messages, researchers have proposed systems such as HelpMeOut, which presents examples of
how other programmers corrected similar errors, in order to help novices [4].

The presentation of error messages, however, is an under-examined aspect in the literature and
hence the focus of our study. The most relevant work is Barik et al.’s survey of how program
analysis tools present their output [2]. Yet, there is a crucial difference between the error messages
programmers run into during regular execution of their code and the output they see from
conducting a deliberate program analysis, often using a separate tool. In addition, Barik et al.
acknowledged that the prior work they surveyed lacked user evaluations and connections to HCI
research, two gaps we intend to bridge.

2.2 Presentation Theories and Techniques

To improve the presentation of error messages, we wanted to achieve three specific goals: 1)
making key information from a long message stand out, 2) communicating the relative importance
of different elements within a message, and 3) making it easier to scan and skim the error output.
To this end, we drew from a number of theories and techniques in HCI.

Figure 2: The “spaces” variant of the error message.

First, we drew from a visual perception theory called Semiology of Graphics (SoG), which
Conversy applied to examining strengths and weaknesses of different code representations [3].
According to SoG, different visual variables of 2D marks, such as color, shape, position, size, etc.,
have different effects on visual perception. For example, color makes it easier to selectively focus
one’s attention on specific marks quickly, while differences in luminosity allows the user to rank
marks from lighter ones to darker ones.

Second, we employed the law of proximity in Gestalt Principles [8]. It suggests that humans
perceive connections between visual elements when those elements are closer to one another, and
separation when they are relatively far apart. One practical application of the law of proximity is
to use whitespace to group visual elements into meaningful chunks.

Last, we applied the Progressive Disclosure technique widely used in GUI design [6]. According
to Nielsen, “Progressive disclosure defers advanced or rarely used features to a secondary screen,
making applications easier to learn and less error-prone.” We believe modern IDEs (Integrated
Development Environments) have the capabilities to support progressive disclosure of information
when presenting error messages.

3 REDESIGNING AN ERROR MESSAGE

We applied the presentation theories and techniques described above to a representative
runtime error message in Flutter, an open-source, multi-platform UI framework that was gaining
popularity. The error, shown in Fig. 1 was run into by a user in a real-world situation and the
message emitted was not helpful, to the extent that the user asked for help on Stack Overflow, an
online Q&A forum for computer programming.

We selected this message for two reasons. First, it was one of the popular questions about a
runtime error in Flutter. Second, the accepted answer simply called out the key information from
the original message, therefore the poor performance of the message was due to its presentation
rather than content. This quality made it an ideal candidate for testing presentation techniques.

Using the snippet included in the user’s post†, we reproduced the error and modified the
resulting message into three variants described below.

3.1 The “Spaces” Variant

Applying the law of proximity [8] to the original error message led to this variant we called
“spaces” (see Fig. 2). Specifically, we made two modifications. First, we added an empty line both
above and below the summary of the error “TextField widgets require a Material widget ancestor,
but we couldn’t find any.” The extra whitespace made the summary stand out. Second, we added
subheadings such as “Explanation” and “Potential Fix”, and additional line breaks to break up the
long message into smaller, easier to skim sections.

† Using TextField throws “No Material widget found” error. https://stackoverflow.com/questions/43947552. Retrieved on
2019-02-16.

https://stackoverflow.com/questions/43947552

Figure 3: The “colors” variant of the error message.

Figure 4: The “ellipses” variant of the error
message.

3.2 The “Colors” Variant

To create the “colors” variant (see Fig. 3), we analyzed the relative importance of different
pieces of information in the message and came up with a simple color coding scheme:

• Display the error summary in red.
• Display the object which the error is associated with in blue.
• Display detail that is usually not needed in gray. As Fig. 3 shows, “TextField” is displayed in

blue, while its constructor’s parameters are downplayed in gray.
• Display the rest of the message in the standard color (usually black).
• In addition, use boldface sparingly to emphasize certain information at the message

author’s discretion.

The goal of such color treatments is to make the most important information visually salient,

so the user can selectively pay attention to more useful parts of the message.

3.3 The “Ellipses” Variant

The “ellipses” variant shows an application of the progressive disclosure technique in error
messages (see Fig. 4). When we consider the capabilities of a modern IDE, we can add useful
affordances within the error message to create layers of disclosure. For example, we collapsed the
TextField widget’s parameter list (line 2 of the error) and the widget’s ancestors beyond the
immediate three to an ellipses that can potentially expand to show the full list upon clicking. The
resulting error message is considerably shorter than the original, increasing the likelihood of
drawing the user’s attention to higher-level elements in the message at a glance.

4 EXPERIMENTAL DESIGN

To compare the usability of the three variants with the original, we conducted an online
experiment using a scenario-based questionnaire created in survey software Qualtrics. We
recruited 52 mobile app developers from Flutter’s user community in this study. All participants
reported an experience level of novice or above with Flutter. Most of them were also actively using
Flutter: 75% of participants reported using Flutter within the past week of the experiment.

The 52 participants were randomly assigned to one of four experimental groups. The original
form of the error message was shown to the control group, while the variants were shown to the
three treatment groups, respectively. Participants went through 6 main steps in the experiment
listed in Table 1.

In the second step of the experiment, participants saw one of the four versions of the error
message assigned to their group for up to 30 seconds. Why did we set this time limit? There were
two reasons. First, it appeared to be a reasonable design goal, since a human expert would likely to
take less than 30 seconds to explain this error based on the length of the accepted answer on Stack
Overflow. Second, in a pilot study without any time limit, we found that some participants took an
unrealistic amount of time to debug the error, perhaps debugging in an actual IDE.

Table 1: Experimental Procedure

Step Participant Action

1

Read the code snippet in Figure 1 for up to
90 seconds.

2 Read one of the four versions of the error
message for up to 30 seconds.

3 Describe what the error message was trying
to say.

4 Propose a potential error fix.
(The code snippet was shown again, for
participants to use if they so desired.)

5 Choose whether to take another look at the
error message for up to 15 seconds, and
repeat steps 2, 3, and 4.

6 Compare a variant with the original error
message and explain preference.

Figure 5: Error comprehension rates when up to 30
seconds were given to read the error message.

We measured two outcome variables in the experiment: error comprehension and error
resolution. The two authors independently coded participants’ descriptions of what the error was
about and their proposed modifications to the code into one of the three categories: “correct,”
“incorrect,” or “uncertain.” We assessed answers provided both within the 30-second limit and
within the total limit of 45 seconds participants could use to examine the error message.

Some participants’ answers were ambiguous, which led to disagreements in our assessments.
We resolved such differences in a mechanical way. When we consolidated our assessments of an
answer “liberally,” the final assessment was “correct” unless both authors considered it to be
incorrect. In contrast, when we consolidated our assessments “conservatively,” the final assessment
was “incorrect” unless both authors considered the answer correct.

After consolidating two authors’ assessments, we calculated the error comprehension rate for
each experimental group as the number of participants with a correct explanation of the error
divided by the total number of participants in that group. We calculated the error resolution rate in
a similar manner using consolidated assessments of participants’ proposed error fixes.

5 RESULTS

5.1 Error Comprehension

All variants outperformed the original in terms of error comprehension in both liberal and
conservative assessments (see Fig. 5). In particular, the “spaces” variant resulted in the highest
accuracy rate, 29.48 percentage points (pp) higher than that of the original message in the liberal
assessment when participants were given 30 seconds to read the error message. The advantage
persisted when participants took another look at the error message for up to 15 seconds (see
Fig. 6), after which the “spaces” variant resulted in an impressive 91.67% error comprehension rate
in the liberal assessment and 83.33% in the conservative assessment.

5.2 Error Resolution

The visually-enhanced variants also improved error resolution. They all strongly outperformed
the original in our experiment (see Fig. 7 and Fig. 8). For example, under the 45-second time limit,
the variants had an advantage between 15.38 pp and 28.21 pp in conservative assessments and
between 23.08 pp and 44.87 pp in liberal assessments. Within the variants, the “spaces” variant
again resulted in the best performance, achieving 83.33% error resolution rate in the liberal
assessment and 75% in conservative assessment under the combined 45-second time limit.

5.3 User Preference

While most of our quantitative results did not achieve statistical significance due to small
sample size, the risk of committing type I error was mitigated by self-reported preferences. All
participants preferred to see one of the variants over the original. In open-ended comments,
participants explained why they liked the variant better. Below are some examples (words in
parentheses are added by the authors):

Figure 6: Error comprehension rates when up to 45
seconds were given to read the error message.

Figure 7: Error resolution rates when up to 30
seconds were given to read the error message.

Figure 8: Error resolution rates when up to 45
seconds were given to read the error message.

• “The error on the right (the ‘colors’ variant) is a huge improvement with the critical short
message in red, the affected widget in blue.”

• “Hiding the whole Widget object reduces clutter (in the ‘ellipses’ variant), makes it easy to
find the reason the error occurred.”

• “B (the ‘spaces’ variant) is much easier to parse. The sections are clearly broken up, so it is
easy when skimming to know where to jump next.”

6 CONCLUSIONS

Our experiment shows that small changes to the presentation of error messages can result in
substantial improvements of error comprehension and resolution. Moreover, the findings suggest
that visual perception techniques and theories can effectively guide innovations in error message
usability.

Note that the visual presentation changes we applied to the error message would require some
modifications to the Flutter framework to make it work. Specifically, the framework needs to send
structured information to the client instead of a string, when an exception is thrown. Such
modifications were considered feasible by engineers knowledgeable about the framework.

Our next steps include testing visual presentation techniques on a larger variety of error
messages and collecting data through field testing.

REFERENCES

[1] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How Should Compilers Explain Problems to
Developers? In Proc. ESEC/FSE ‘18, 633–643. https://doi.org/10.1145/3236024.3236040

[2] Titus Barik, Chris Parnin, and Emerson Murphy-Hill. 2017. One λ at a time: What do we know about presenting
human-friendly output from program analysis tools? Workshop at PLATEAU’17.

[3] Stéphane Conversy. 2014. Unifying Textual and Visual: A Theoretical Account of the Visual Perception of
Programming Languages. In Proc. Onward! ‘14, 201–212. https://doi.org/10.1145/2661136.2661138

[4] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010. What Would Other Programmers Do:
Suggesting Solutions to Error Messages. In Proc. CHI ’10, 1019–1028. https://doi.org/10.1145/1753326.1753478

[5] Jakob Nielsen. 2001. Error Message Guidelines. Nielsen Norman Group. Retrieved January 1, 2019 from
https://www.nngroup.com/articles/error-message-guidelines

[6] Jakob Nielsen. 2006. Progressive Disclosure. Nielsen Norman Group. Retrieved January 1, 2019 from
https://www.nngroup.com/articles/progressive-disclosure

[7] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert Bowdidge. 2014. Programmers’
Build Errors: A Case Study (at Google). In Proc. ICSE '14, 724–734. https://doi.org/10.1145/2568225.2568255

[8] Mads Soegaard. 2018. Laws of Proximity, Uniform Connectedness, and Continuation – Gestalt Principles (2).
The Interaction Design Foundation. Retrieved January 1, 2019 from https://www.interaction-
design.org/literature/article/laws-of-proximity-uniform-connectedness-and-continuation-gestalt-principles-2

[9] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What They Mean. Advances in Human-
Computer Interaction 2010: 1–26. https://doi.org/10.1155/2010/602570

	The Impact of “Cosmetic” Changes on the Usability of Error Messages
	ABSTRACT
	1 INTRODUCTION
	KEYWORDS
	2 RELATED WORK
	2.1 The Usability of Error Messages
	2.2 Presentation Theories and Techniques

	3 REDESIGNING AN ERROR MESSAGE
	3.1 The “Spaces” Variant
	3.2 The “Colors” Variant
	3.3 The “Ellipses” Variant

	4 EXPERIMENTAL DESIGN
	5 RESULTS
	5.1 Error Comprehension
	5.2 Error Resolution
	5.3 User Preference

	6 CONCLUSIONS
	REFERENCES

