Making Marshmallow’s Permissions Sweet Again

Ajay Mohan Heli Modi Kandarp K. Shreeja K. Yu Shen
ajmohan hmodi kkhandwala shk149 yus067
ABSTRACT for the user in terms of the number and specific permission re-

Android 6 allows the user to place an app either in a position
of absolute distrust or one with a high level of trust. We show
how this actually does not offer the flexibility to allow certain
actions while preventing undesirable ones. This paper aims
to address the problem by bringing out potential misuse of
permissions to the user’s attention. To do so, we come up with
a new way to assign and declare permissions that can mini-
mize interactions between two sensitive resources which we
argue to be what really needs to be monitored and controlled.
We also perform static code analysis of seven open-source ap-
plications to measure the impact of the proposed model both
in terms of usability and from the perspective of developers.

1. INTRODUCTION

The mechanism by which sensitive resources are protected in
Android is the use of permissions. Only resources that have
been authorized for use, by means of the corresponding per-
mission(s) being granted, may be accessed by apps. Android
started out with an “all or nothing” approach where users did
not have control over individual permissions being granted to
apps: they could be installed only with all requested permis-
sions given away, not otherwise.

With the introduction of Android 6 Marshmallow last year,
app permissions became granular and more user-friendly at
the same time. At the first instance when an app would re-
quest any so-called “dangerous” permission, a prompt would
be presented to the user to choose whether to allow or deny
access to the resource, following which the choice is persis-
tent. Also, users could revoke any permission that had been
granted earlier, thus making permissions more transparent
than previous iterations of Android.

However, the permission model has drawbacks. While it does
well at restricting blanket access to specific resources, it does
not control how the app uses those resources. Another issue
is that some permissions touted as “normal” permissions are
granted to apps without informing the user (note that these
cannot be revoked), which includes access to the Internet.
This imparts a false sense of security to the average user and
allows attacks such as information leak to go through, by use
of sensitive resources in ways the user did not wish to allow.

For example, a third-party keyboard app may access the In-
ternet to update definitions in the dictionary used and also re-
quest access to external storage to store/backup preferences.
These are legitimate enough use cases to convince most peo-
ple to part with the corresponding permissions. However, a
malicious app could misuse these permissions, say, by si-
phoning off private data in the external storage to a remote
server, without the user realizing it. It is instructive to ob-
serve that an equivalent, but harmless app is indistinguishable

quests the current security model mandates.

This paper attempts to address such behavior by making it
harder to misuse different permissions. To do so, in the fol-
lowing sections, we present a new model that helps minimize
interactions between two sensitive resources and allows the
user to decide which ones to allow or not. In doing so, we
try to deviate as little as possible from the user experience in
Android Marshmallow to avoid any unnecessary confusion,
while being able to provide a higher level of security.

2. THREAT MODEL

Threat modeling is a procedure to identify vulnerabilities that
will assist in defining countermeasures to prevent threats to
the system. In case of Android applications, the threat model
is as follows. The attacker is a developer who makes an
Android application (“app”) which needs resources that are
guarded by the corresponding permissions. The capabilities
of the attacker are to get users to willingly install a seemingly
innocuous app and having the app able to access resources
protected by some (normal) permissions by default and addi-
tional (dangerous) permissions granted by the user on request
for a purportedly legitimate purpose. The victim is a user of
such a malicious app, who is unaware about the misuse of the
permissions that may happen.

The point of contention is in the way the current and proposed
permission models attempt to protect the sensitive resources.
We argue that users most often wish to control how apps use
different resources, not the resources by themselves. As an
example, it may be okay for an app to access photos on the
user’s device, but not to upload them without authorization.
This is something that is not in the scope of the current per-
mission model, but at the center of our proposal in this paper.

3. PROPOSED PERMISSION MODEL

In essence, the way we envision permissions should be en-
forced is as follows. Android apps are composed of different
components (activities, services, background receivers and
content providers). There may be multiple instances of each
of these with different sets of permissions limiting them. The
user is prompted when either a single component with one
or more conflicting permissions is run, or when two compo-
nents with permissions that can cause harm interact with one
another.

Our design (see Figure 1) has four major aspects. The secret
sauce is the use of suspicious combinations of permissions
(section 3.1). A new app manifest structure is defined next.



Source Analysis
Manual/Automatic

Usability Study

Compiled Binpry
Feedback

New Manifeft

ication Runtime + ission Model - Ul Alert

APK File ————————

Android Open Source Project{AQSP)

Figure 1. Architecture of our Permission Model

Section 3.3 elaborates on static code analysis for identify-
ing boundary points (where components interact). Finally,
we discuss how to evoke an appropriate popup for requesting
permissions (section 3.4).

3.1 Suspicious Combinations of Permissions

Android provides a relatively high level of flexibility, by
allowing developers to access fine-grained permissions
such as READ_CALENDAR and WRITE_CALENDAR. In the
interest of a better user experience, however, the dangerous
permissions are “lumped” together into permission groups,
which cater to more abstract behavior. There are nine such
groups in Android Marshmallow, as described below.

. Calendar (Managing calendars)

. Camera (Taking photos and recording videos)
. Contacts (Managing contacts)

. Location (Current device location)

. Microphone (Audio recording)

. Phone (Dialing and managing phone calls)

. Body Sensors (Heart rate and similar data)

. SMS (Sending and viewing messages)

. Storage (Accessing photos, media, and files)

O 00 IO\ Wk~ Wi —

For our model, we note permissions of interest, which include
the nine permission groups above and additional groups for-
mulated from the normal permission set, consisting of per-
missions that do entail security concerns — Internet, NFC,
BT, Network and WiFi. In fact, INTERNET was a danger-
ous permission in previous iterations of Android. It is inter-
esting to note that all the new permission groups identified
are communication-related. As argued earlier, a permission
in itself usually poses no harm and may simply be granted.
There are certain exceptions, such as making phone calls
(CALL_PHONE), sending text messages (SEND_SMS) or us-
ing NFC, since use of any of these can cost the user money or
directly affect privacy. As an additional level of security, we
can allow users to revoke (or not automatically grant) some
individual permissions that he/she values.

Next, we empirically identify potentially malicious pairs of
permissions and find them to be classifiable either as resulting
in information leaks or context leaks.

Information leaks:
INTERNET with any other permission of interest except NFC
MICROPHONE with PHONE (ex: recording conversations)

Context leaks:

CAMERA with CALENDAR or LOCATION (ex: geotagging)
LOCATION with BODY SENSORS or MICROPHONE

(ex: augmented location)

3.2 Proposed Structure of App Manifest

Every app has an AndroidManifest .xml file which de-
clares the various components (activities, services, broadcast
receivers, and content providers) of the application and the
“global” permission set. Figure 2 shows the usual structure
of the app manifest in Android Marshmallow.

An activity is a component that provides a visual interface
with which users can interact in order to do something, such
as dial a number, take a photo, send an email or view a map.
An app usually consists of multiple activities that are loosely
bound to each other. The <activity> tag is used to de-
clare an activity. A service is a component representing either
an application’s desire to perform a longer-running operation
while not interacting with the user or to supply functionality
for other applications to use. Each service has a correspond-
ing <service> declaration. An intent is a messaging ob-
ject used to request an action from another app component.
The <intent-filter> tag describes the capabilities of
its parent component, i.e. what an activity or service can do.

The manifest file also lists the permissions the applica-
tion expects to be granted in order to function fully. The
<uses-permission> tag in the manifest is used to de-
clare permissions that the application will need to access the
various resources protected by those permissions.

<manifest>

<uses—permission />
<permission />

<application>

<activity android:name="com.example.project.XYZ"
android:permission="ABC">
<intent-filter>
<action />
<category />
<data />
</intent-filter>
<meta-data />
</activity>

<service android:name="string"
android:permission="string">
<intent-filter> . . . </intent-filter>
<meta-data/>
</service>
<uses-library />
</application>

</manifest>

Figure 2. App Manifest File Structure (in Marshmallow)

The various components are protected by the permis-
sions listed in the <uses-permission> tag or



<permission> tag (used to declare custom permis-
sions), using the android:permission attribute. This
attribute, which may be present in activity and service tags,
lists any permissions that clients must have to launch the
particular component (this is its primary purpose). For exam-
ple, if a caller of startActivity () has not been granted
the specified permission, its intent will not be delivered to
the activity. If this attribute is not set, the component is not
protected by any permissions, other than those declared for
the app as a whole.

Note that we described how permissions are defined
in Android Marshmallow above. @ We propose that the
android:permission attribute must be present within
every component and it is what should be used for declaring a
permission, without the need to declare the same permission
“globally” using the <uses:permission/> tag. Note
that multiple permissions could be associated with a single
activity (or component). Thus, in our model, there is no use
of the <uses:permission/> tag.

3.3 Boundaries between Components

Since components may have conflicting permissions, any
sharing between them must be controlled, otherwise it renders
the enforcement of permission combinations meaningless.

We performed static code analysis to accomplish two goals:
(a) to spot transition points between activities and
(b) to note the current coding standards and methodology.

We analyzed seven open-source Android apps that were
picked randomly across various categories: AdBlock Plus,
Barcode Scanner, Dolphin Browser, Telegram, VLC, Word-
Press and Wikipedia.

The tool used for this was 1int, which is a tool that is bun-
dled with most Android (app development) IDEs. A linter is
generically a tool that flags incorrect language usage in soft-
ware. It comes with the ability to define a custom set of rules
and patterns which will be looked for during the analysis.
Upon finishing the analysis, it generates a HTML document
which lists all the findings from the source code based on the
rules provided beforehand (and some of its own general rules
for missing API requirements).

To perform the analysis on the apps, we created our own
1int rules, which are as follows:

e Look for the methods checkSelfPermission () and
requestPermissions (). These methods are manda-
tory to be used for requesting a dangerous permission.

e Look for the method intent (). This method is the
fundamental method used to navigate to another activity
within the application as well as to invoke any system ap-
plication for handling a task.

e Look for the pattern “.class”. Activities are essentially java
files which can use all the public methods and variables of
another activities by creating the object of that activity.

e Monitor the usage of global variables, declared in the
Application.class file, which can be accessed
across the components of the application.

After performing static code analysis, we had the following
information for each activity: Permission set, Activities tran-
sitioned to and Point of transition. Thus, from the static code
analysis, we identified the exact points of transition which
should be monitored by the Android operating system to gen-
erate a popup that prompts the user for permission to make
use of conflicting permissions.

3.4 New Permission Request Popup

Figure 3 illustrates how an implicit intent is delivered through
the system to start another activity in Android Marshmallow.
[1] Activity A creates an Intent with an action description and
passesitto startActivity ().

[2] The Android System searches all apps for an intent filter
that matches the intent.

[3] When a match is found, the system starts the matching
activity (Activity B) by invoking its onCreate () method
and passing it the Intent.

Intent Intent

. . A ~
’ \ ’ S

startActivity() \ ! onCreate()
\
: v v
Activity A Activity B

Figure 3. Flow of intent to start another activity

The system searches through the list of all intents
using the startActivity(Intent) method in
android.content.Context, which calls a native
method in ActivityManagerNative. java that uses
an Inter-Process Communication (IPC) mechanism to start
the appropriate activity. Before the invocation of the next
activity (or component), we must introduce our permission
verification process, once the intent match is completed.

Allow Twitter to use data on
° external storage while having
access to the Internet?

DENY ALLOW

Figure 4. Permission Request Dialog

Based on the list of suspicious permission pairs and the newly
structured manifest file, a popup is generated at any suspi-
cious points of transition (or when the component uses multi-
ple conflicting permissions), which will prompt the user (only
for the first occurrence, after which the choice is persistent)
for permission to go ahead or reject the permission request,
as seen in Figure 4. Note that if a component remains iso-
lated, i.e. does not interact with other components nor does it
make use of multiple conflicting permissions, no prompts are
required to be shown to the user.



3.5 Usability Study

This section enunciates the pros and cons of our model from
the perspective of both users and developers. As it is not
possible for us to use the proposed app manifest structure
(because of incompatibility with existing IDEs), we used the
findings from the previously discussed static code analysis.

For the usability study, we compared the number of permis-
sion request popups (for each app) in Marshmallow with our
proposed model. This was done to measure the impact of our
model on the user experience.

Dia\chox Permission: DialogBox Permissions

senger/volley/toolbox/AndroidAuthenticator.java:105: Missing
permissions requlled by AccountManager invalidateAuthToken: android.permission. USE_CREDENTIALS

€override
public void invalidateAuthToken(String

Figure 5. 1int Output for Boundary Locations

Application Reduction in Permission Requests
VLC -33% (increase)

Dolphin Browser 0%

WordPress 0%

Telegram 20%

Barcode Scanner 25%

AdBlock Plus 33%

Wikipedia 100%

Table 1. Results of Usability Study

As seen in Table 1, by using our permission model, the num-
ber of permission request popups usually decreases. How-
ever, there is an increase of 33% in VLC. This is because the
number of individual permissions requested in VLC is less
than the number of permission combinations that are identi-
fied in our model. For such applications, refactoring the code
to use fewer conflicting permissions in components will help.

From the developers’ perspective, we tried to find how many
changes a would developer have to implement to meet the
new specifications. This is pretty straightforward as the only
change a developer has to make (to ensure compatibility with
our proposed model) is in the per-activity declaration of per-
missions in the app manifest. Also, developers can use our
lint rules (stated in static code analysis) to identify places
of improvement in the existing code. The developer can then
try and modify the existing code to make use of fewer per-
missions within each activity.

4. RELATED WORK

Right from the release of the first version of Android OS
in 2008, Android powered mobile devices have proliferated.
The Google Play Store has also witnessed a large number ap-
plications that require a plethora of permissions from users
in order to work as expected. Android application security
has been a topic of great impact since then, although most
research has been in sandboxing the execution environment
of applications. This correlates to the traditional way of pro-
viding isolation and protection mechanisms by operating sys-
tems. From the application’s perspective, research extended

in directions that verified the sanity of applications. One such
direction is verifying permissions that are specified in the app
manifest. Every permission that is defined for Android has an
associated API that it controls. The security subsystem will
then verify if the permissions are present or not during the
invocation of these APIs during runtime.

Orthogonal research like Taintdroid? track the tainting of crit-
ical user information from tainted source to tainted sinks.
They use virtual taint map across various points in the exe-
cution flow of the system. We do not further discuss this line
of research as our goal was to keep the execution overhead
to the kernel module as minimal as possible and systems like
Taintdroid suffer from performance bottlenecks.

PScout? is a tool that extracts permission specification from
the Android OS using static analysis techniques. They extract
this information from the existing permissions across various
Android systems and establishing the fine grained results of
their association. We base some of our work by reusing con-
dition probabilities from PScout and also extend it by com-
pletely redefining the permission groups. To the best of our
knowledge, we are the first to perform Android’s individual
component specific permission analysis. We do believe based
on our results that this is an effective way in thinking about
securing android applications in the future.

5. CONCLUSION

From the previous discussions, we now know that the per-
mission model introduced with the latest iteration of Android
did increase manageability of permissions, yet, it did not fo-
cus on the security aspect of how permissions are being used.
We found that permissions can be used maliciously in con-
junction, in ways the user did not wish to allow. Attacks such
as information leaks are possible without the users knowledge
(or interaction). Hence, to address this issue, we came up with
a set of suspicious combinations of permissions, defined a
new structure of the app manifest to declare permissions per-
component rather than declaring them globally. Furthermore,
we conducted static code analysis on seven open-source An-
droid apps and identified the transition points between activi-
ties. We proposed amendments to the Android OS to monitor
these transition points for generating OS-level permission re-
quest popups. Finally, we performed a usability study which
showed that the number of permission requests a user faces
usually decreases with our model.

REFERENCES

1. usenix.org/system/files/conference/usenixsecurity15/sec15-
paper-wijesekera.pdf

2. eecg.toronto.edu/ lie/papers/PScout-CCS2012-web.pdf

3. usenix.org/legacy/event/osdil0/tech/full_papers/Enck.pdf



	1. Introduction
	2. Threat Model
	3. Proposed Permission Model
	3.1 Suspicious Combinations of Permissions
	3.2 Proposed Structure of App Manifest
	3.3 Boundaries between Components
	3.4 New Permission Request Popup
	3.5 Usability Study

	4. Related Work
	5. Conclusion
	References

